VIP

A Vi Package for GNU Emacs
(Version 3.5, September 15, 1987)

Masahiko Sato

Distribution

Copyright (©) 1987 Masahiko Sato.

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the same conditions as for modified versions.

Introduction

VIP is a Vi emulating package written in Emacs Lisp. VIP implements most Vi commands
including Ex commands. It is therefore hoped that this package will enable you to do Vi
style editing under the powerful GNU Emacs environment. This manual describes the usage
of VIP assuming that you are fairly accustomed to Vi but not so much with Emacs. Also
we will concentrate mainly on differences from Vi, especially features unique to VIP.

It is recommended that you read chapters on survey and on customization before you
start using VIP. Other chapters may be used as future references.

Comments and bug reports are welcome. Please send messages to
ms@Sail.Stanford.Edu if you are outside of Japan and to masahiko@unsun.riec.tohoku. junet
if you are in Japan.

1 A Survey of VIP

In this chapter we describe basics of VIP with emphasis on the features not found in Vi
and on how to use VIP under GNU Emacs.

1.1 Basic Concepts

We begin by explaining some basic concepts of Emacs. These concepts are explained in
more detail in the GNU Emacs Manual.

Conceptually, a buffer is just a string of ASCII characters and two special characters
PNT (point) and MRK (mark) such that the character PNT occurs exactly once and MRK occurs
at most once. The text of a buffer is obtained by deleting the occurrences of PNT and MRK.
If, in a buffer, there is a character following PNT then we say that point is looking at the
character; otherwise we say that point is at the end of buffer. PNT and MRK are used to
indicate positions in a buffer and they are not part of the text of the buffer. If a buffer
contains a MRK then the text between MRK and PNT is called the region of the buffer.

Emacs provides (multiple) windows on the screen, and you can see the content of a
buffer through the window associated with the buffer. The cursor of the screen is always
positioned on the character after PNT.

A keymap is a table that records the bindings between characters and command func-
tions. There is the global keymap common to all the buffers. Each buffer has its local
keymap that determines the mode of the buffer. Local keymap overrides global keymap,
so that if a function is bound to some key in the local keymap then that function will be
executed when you type the key. If no function is bound to a key in the local map, however,
the function bound to the key in the global map becomes in effect.

1.2 Loading VIP

The recommended way to load VIP automatically is to include the line:
(load "vip")

in your .emacs file. The .emacs file is placed in your home directory and it will be executed
every time you invoke Emacs. If you wish to be in vi mode whenever Emacs starts up, you
can include the following line in your .emacs file instead of the above line:

(setq term-setup-hook ’vip-mode)
(See Section 1.3.2 [Vi Mode], page 4, for the explanation of vi mode.)

Even if your .emacs file does not contain any of the above lines, you can load VIP and
enter vi mode by typing the following from within Emacs.

M-x vip-mode

1.3 Modes in VIP

Loading VIP has the effect of globally binding C-z (Control-z) to the function vip-change-
mode-to-vi. The default binding of C-z in GNU Emacs is suspend-emacs, but, you can
also call suspend-emacs by typing C-x C-z. Other than this, all the key bindings of Emacs
remain the same after loading VIP.

Chapter 1: A Survey of VIP 4

Now, if you hit C-z, the function vip-change-mode-to-vi will be called and you will
be in vi mode. (Some major modes may locally bind C-z to some special functions. In
such cases, you can call vip-change-mode-to-vi by execute-extended-command which is
invoked by M-x. Here M-x means Meta-x, and if your terminal does not have a META key you
can enter it by typing ESC x. The same effect can also be achieve by typing M-x vip-mode.)

You can observe the change of mode by looking at the mode line. For instance, if the
mode line is:

————— Emacs: *scratchx (Lisp Interaction)----All--------—-—-
then it will change to:

————— Vi: *scratchx* (Lisp Interaction)----All------------
Thus the word ‘Emacs’ in the mode line will change to ‘Vi’.

You can go back to the original emacs mode by typing C-z in vi mode. Thus C-z toggles
between these two modes.

Note that modes in VIP exist orthogonally to modes in Emacs. This means that you
can be in vi mode and at the same time, say, shell mode.

Vi mode corresponds to Vi’s command mode. From vi mode you can enter insert mode
which corresponds to Vi’s insert mode) by usual Vi command keys like i, a, o ... etc.
P Yy Y

In insert mode, the mode line will look like this:
————— Insert *scratchx (Lisp Interaction)----All----—------—-
You can exit from insert mode by hitting ESC key as you do in Vi.

That VIP has three modes may seem very complicated, but in fact it is not so. VIP is
implemented so that you can do most editing remaining only in the two modes for Vi (that
is vi mode and insert mode).

1.3.1 Emacs Mode

You will be in this mode just after you loaded VIP. You can do all normal Emacs editing
in this mode. Note that the key C-z is globally bound to vip-change-mode-to-vi. So, if
you type C-z in this mode then you will be in vi mode.

1.3.2 Vi Mode

This mode corresponds to Vi’'s command mode. Most Vi commands work as they do in Vi.
You can go back to emacs mode by typing C-z. You can enter insert mode, just as in Vi,
by typing i, a etc.

1.3.3 Insert Mode

The key bindings in this mode is the same as in the emacs mode except for the following 4
keys. So, you can move around in the buffer and change its content while you are in insert
mode.

ESC This key will take you back to vi mode.

C-h Delete previous character.

C-w Delete previous word.

C-z Typing this key has the same effect as typing ESC in emacs mode. Thus typing

C-z x in insert mode will have the same effect as typing ESC x in emacs mode.

Chapter 1: A Survey of VIP 5

1.4 Differences from Vi

The major differences from Vi are explained below.

1.4.1 Undoing

You can repeat undoing by the . key. So, u will undo a single change, while u . . ., for
instance, will undo 4 previous changes. Undo is undoable as in Vi. So the content of the
buffer will be the same before and after u u.

1.4.2 Changing

Some commands which change a small number of characters are executed slightly differently.
Thus, if point is at the beginning of a word ‘foo’ and you wished to change it to ‘bar’ by
typing ¢ w, then VIP will prompt you for a new word in the minibuffer by the prompt ‘foo
=>". You can then enter ‘bar’ followed by RET or ESC to complete the command. Before
you enter RET or ESC you can abort the command by typing C-g. In general, you can abort
a partially formed command by typing C-g.

1.4.3 Searching

As in Vi, searching is done by / and ?. The string will be searched literally by default. To
invoke a regular expression search, first execute the search command / (or ?) with empty
search string. (L.e, type / followed by RET.) A search for empty string will toggle the search
mode between vanilla search and regular expression search. You cannot give an offset to the
search string. (It is a limitation.) By default, search will wrap around the buffer as in Vi.
You can change this by rebinding the variable vip-search-wrap-around. See Chapter 4
[Customization], page 26, for how to do this.

1.4.4 z Command

For those of you who cannot remember which of z followed by RET, . and - do what. You
can also use z followed by H, M and L to place the current line in the Home (Middle, and
Last) line of the window.

1.4.5 Counts

Some Vi commands which do not accept a count now accept one

p

P Given counts, text will be yanked (in Vi’s sense) that many times. Thus 3 p is
the same as p p p.

o)

0 Given counts, that many copies of text will be inserted. Thus o a b ¢ ESC will
insert 3 lines of ‘abc’ below the current line.

/

? Given a count n, n-th occurrence will be searched.

1.4.6 Marking

Typing an m followed by a lower case character ch marks the point to the register named
ch as in Vi. In addition to these, we have following key bindings for marking.

m < Set mark at the beginning of buffer.

Chapter 1: A Survey of VIP 6

m>
m .

m,

Set mark at the end of buffer.
Set mark at point (and push old mark on mark ring).

Jump to mark (and pop mark off the mark ring).

1.4.7 Region Commands

Vi operators like d, c etc. are usually used in combination with motion commands. It is
now possible to use current region as the argument to these operators. (A region is a part
of buffer delimited by point and mark.) The key r is used for this purpose. Thus d r will
delete the current region. If R is used instead of r the region will first be enlarged so that it
will become the smallest region containing the original region and consisting of whole lines.

Thus m

. d R will have the same effect as d d.

1.4.8 Some New Commands

Note that the keys below (except for R) are not used in Vi.

C-a
C-n

C-o
C-r
C-s

C-c
C-x
ESC

Move point to the beginning of line.

If you have two or more windows in the screen, this key will move point to the
next window.

Insert a newline and leave point before it, and then enter insert mode.
Backward incremental search.

Forward incremental search.

These keys will exit from vi mode and return to emacs mode temporarily. If
you hit one of these keys, Emacs will be in emacs mode and will believe that
you hit that key in emacs mode. For example, if you hit C-x followed by 2,
then the current window will be split into 2 and you will be in vi mode again.

Escape to emacs mode. Hitting \ will take you to emacs mode, and you can
execute a single Emacs command. After executing the Emacs command you
will be in vi mode again. You can give a count before typing \. Thus 5\ *,
as well as \ C-u 5 *, will insert ‘*x**x’ before point. Similarly 1 0 \ C-p will
move the point 10 lines above the current line.

Kill current buffer if it is not modified. Useful when you selected a buffer which
you did not want.

@ is for query replace and R is for replace. By default, string to be replaced are
treated literally. If you wish to do a regular expression replace, first do replace
with empty string as the string to be replaced. In this way, you can toggle
between vanilla and regular expression replacement.

These keys are used to Visit files. v will switch to a buffer visiting file whose
name can be entered in the minibuffer. Vis similar, but will use window different
from the current window.

Chapter 1: A Survey of VIP 7

#c
#C

If followed by a certain character ch, it becomes an operator whose argument
is the region determined by the motion command that follows. Currently, ch
can be one of ¢, C, g, g and s.

Change upper case characters in the region to lower case (downcase-region).

Change lower case characters in the region to upper case. For instance, # C 3
w will capitalize 3 words from the current point (upcase-region).

Execute last keyboard macro for each line in the region (vip-global-execute).

Insert specified string at the beginning of each line in the region (vip-quote-
region).

Check spelling of words in the region (spell-region).
Call last keyboard macro.

1.4.9 New Key Bindings

In VIP the meanings of some keys are entirely different from Vi. These key bindings are
done deliberately in the hope that editing under Emacs will become easier. It is however
possible to rebind these keys to functions which behave similarly as in Vi. See Section 4.2
[Customizing Key Bindings|, page 26, for details.

C-g
g

SPC
RET

In Vi, C-g is used to get information about the file associated to the current
buffer. Here, g will do that, and C-g is used to abort a command (this is for
compatibility with emacs mode.)

Now these keys will scroll up and down the text of current window. Convenient
for viewing the text.

They are used to switch to a specified buffer. Useful for switching to already
existing buffer since buffer name completion is provided. Also a default buffer
will be given as part of the prompt, to which you can switch by just typing RET
key. s is used to select buffer in the current window, while S selects buffer in
another window.

These keys will exit from vi mode and return to emacs mode temporarily. If
you type C (X), Emacs will be in emacs mode and will believe that you have
typed C-c (C-x, resp.) in emacs mode. Moreover, if the following character
you type is an upper case letter, then Emacs will believe that you have typed
the corresponding control character. You will be in vi mode again after the
command is executed. For example, typing X S in vi mode is the same as
typing C-x C-s in emacs mode. You get the same effect by typing C-x C-s in
vi mode, but the idea here is that you can execute useful Emacs commands
without typing control characters. For example, if you hit X (or C-x) followed
by 2, then the current window will be split into 2 and you will be in vi mode
again.

Chapter 1: A Survey of VIP 8

In addition to these, ctl-x-map is slightly modified:
X3
C-x 3 This is equivalent to C-x 1 C-x 2 (1 + 2 = 3).
1.4.10 Window Commands

In this and following subsections, we give a summary of key bindings for basic functions
related to windows, buffers and files.

C-n Switch to next window.

X1

C-x1 Delete other windows.

X2

C-x 2 Split current window into two windows.

X3

C-x 3 Show current buffer in two windows.

1.4.11 Buffer Commands

s Switch to the specified buffer in the current window (vip-switch-to-buffer).

S Switch to the specified buffer in another window (vip-switch-to-buffer-
other-window).

K Kill the current buffer if it is not modified.

XS

C-x C-s Save the current buffer in the file associated to the buffer.

1.4.12 File Commands

v Visit specified file in the current window.
v Visit specified file in another window.

XW

C-x C-w Write current buffer into the specified file.
XI

C-x C-1

Insert specified file at point.

1.4.13 Miscellaneous Commands

X (

C-x (Start remembering keyboard macro.
X)

C-x) Finish remembering keyboard macro.
* Call last remembered keyboard macro.
X Z

C-x C-z Suspend Emacs.

Chapter 1: A Survey of VIP

ZZ Exit Emacs.
Q Query replace.
R Replace.

10

2 Vi Commands

This chapter describes Vi commands other than Ex commands implemented in VIP. Except
for the last section which discusses insert mode, all the commands described in this chapter
are to be used in vi mode.

2.1 Numeric Arguments

Most Vi commands accept a numeric argument which can be supplied as a prefix to the
commands. A numeric argument is also called a count. In many cases, if a count is given,
the command is executed that many times. For instance, 5 d d deletes 5 lines while simple
d d deletes a line. In this manual the metavariable n will denote a count.

2.2 Important Keys

The keys C-g and C-1 are unique in that their associated functions are the same in any of
emacs, vi and insert mode.

C-g Quit. Cancel running or partially typed command (keyboard-quit).
Cc-1 Clear the screen and reprint everything (recenter).

In Emacs many commands are bound to the key strokes that start with C-x, C-c and
ESC. These commands can be accessed from vi mode as easily as from emacs mode.

C-x

C-c

ESC Typing one of these keys have the same effect as typing it in emacs mode.
Appropriate command will be executed according as the keys you type after it.
You will be in vi mode again after the execution of the command. For instance,
if you type ESC < (in vi mode) then the cursor will move to the beginning of
the buffer and you will still be in vi mode.

o

X Typing one of these keys have the effect of typing the corresponding control
character in emacs mode. Moreover, if you type an upper case character fol-
lowing it, that character will also be translated to the corresponding control
character. Thus typing X W in vi mode is the same as typing C-x C-w in emacs
mode. You will be in vi mode again after the execution of a command.

\ Escape to emacs mode. Hitting the \ key will take you to emacs mode, and you

can execute a single Emacs command. After executing the Emacs command
you will be in vi mode again. You can give a count before typing \. Thus 5 \
+, as well as \ C-u 5 +, will insert ‘+++++” before point.

2.3 Buffers and Windows

In Emacs the text you edit is stored in a buffer. See GNU Emacs Manual, for details. There
is always one selected buffer which is called the current buffer.

You can see the contents of buffers through windows created by Emacs. When you have
multiple windows on the screen only one of them is selected. Each buffer has a unique name,

Chapter 2: Vi Commands 11

and each window has a mode line which shows the name of the buffer associated with the
window and other information about the status of the buffer. You can change the format
of the mode line, but normally if you see ‘**’ at the beginning of a mode line it means that
the buffer is modified. If you write out the content of the buffer to a file, then the buffer
will become not modified. Also if you see ‘%% at the beginning of the mode line, it means
that the file associated with the buffer is write protected.

We have the following commands related to windows and buffers.
C-n Move cursor to the next-window (vip-next-window).

X1 Delete other windows and make the selected window fill the screen
(delete-other-windows).

X2 Split current window into two windows (split-window-vertically).
X3 Show current buffer in two windows.

s buffer RET
Select or create a buffer named buffer (vip-switch-to-buffer).

S buffer RET
Similar but select a buffer named buffer in another window
(vip-switch-to-buffer-other-window).

K Kill the current buffer if it is not modified or if it is not associated with a file
(vip-kill-buffer).

XB List the existing buffers (1ist-buffers).

As buffer name completion is provided, you have only to type in initial substring of the
buffer name which is sufficient to identify it among names of existing buffers. After that, if
you hit TAB the rest of the buffer name will be supplied by the system, and you can confirm
it by RET. The default buffer name to switch to will also be prompted, and you can select
it by giving a simple RET. See GNU Emacs Manual for details of completion.

2.4 Files

We have the following commands related to files. They are used to visit, save and insert
files.

v file RET
Visit specified file in the current window (vip-find-file).

V file RET
Visit specified file in another window (vip-find-file-other-window).

XS Save current buffer to the file associated with the buffer. If no file is associated
with the buffer, the name of the file to write out the content of the buffer will
be asked in the minibuffer.

X W file RET
Write current buffer into a specified file.

XTI file RET
Insert a specified file at point.

Chapter 2: Vi Commands 12

g Give information on the file associated with the current buffer. Tell you the
name of the file associated with the buffer, the line number of the current point
and total line numbers in the buffer. If no file is associated with the buffer, this
fact will be indicated by the null file name ‘""’.

In Emacs, you can edit a file by visiting it. If you wish to visit a file in the current
window, you can just type v. Emacs maintains the default directory which is specific
to each buffer. Suppose, for instance, that the default directory of the current buffer is
/usr/masahiko/lisp/. Then you will get the following prompt in the minibuffer.

visit file: /usr/masahiko/lisp/

If you wish to visit, say, vip.el in this directory, then you can just type ‘vip.el’ followed
by RET. If the file vip.el already exists in the directory, Emacs will visit that file, and
if not, the file will be created. Emacs will use the file name (vip.el, in this case) as the
name of the buffer visiting the file. In order to make the buffer name unique, Emacs may
append ‘<2>’, ‘<3>’ etc., to the buffer name. As the file name completion is provided here,
you can sometime save typing. For instance, suppose there is only one file in the default
directory whose name starts with ‘v’, that is ‘vip.el’. Then if you just type v TAB then
it will be completed to ‘vip.el’. Thus, in this case, you just have to type v v TAB RET
to visit /usr/masahiko/lisp/vip.el. Continuing the example, let us now suppose that
you wished to visit the file /usr/masahiko/man/vip.texinfo. Then to the same prompt
which you get after you typed v, you can enter ‘/usr/masahiko/man/vip.texinfo’ or
‘../man/vip.texinfo’ followed by RET.

Use V instead of v, if you wish to visit a file in another window.

You can verify which file you are editing by typing g. (You can also type X B to get
nformation on other buffers too.) If you type g you will get an information like below in
the echo area:

"/usr/masahiko/man/vip.texinfo" line 921 of 1949

After you edited the buffer (‘vip.texinfo’, in our example) for a while, you may
wish to save it in a file. If you wish to save it in the file associated with the buffer
(/usr/masahiko/man/vip.texinfo, in this case), you can just say X S. If you wish to
save it in another file, you can type X W. You will then get a similar prompt as you get for
v, to which you can enter the file name.

2.5 Viewing the Buffer

In this and next section we discuss commands for moving around in the buffer. These
command do not change the content of the buffer. The following commands are useful for
viewing the content of the current buffer.

SPC
C-f Scroll text of current window upward almost full screen. You can go forward
in the buffer by this command (vip-scroll).

Chapter 2: Vi Commands 13

RET

C-b Scroll text of current window downward almost full screen. You can go backward
in the buffer by this command (vip-scroll-back).

Cc-d Scroll text of current window upward half screen. You can go down in the buffer
by this command (vip-scroll-down).

C-u Scroll text of current window downward half screen. You can go up in the buffer
by this command (vip-scroll-up).

C-y Scroll text of current window upward by one line (vip-scroll-down-one).

C-e Scroll text of current window downward by one line (vip-scroll-up-one).

You can repeat these commands by giving a count. Thus, 2 SPC has the same effect as SPC
SPC.

The following commands reposition point in the window.

zH

z RET Put point on the top (home) line in the window. So the current line becomes
the top line in the window. Given a count n, point will be placed in the n-th
line from top (vip-line-to-top).

zM

z. Put point on the middle line in the window. Given a count n, point will be
placed in the n-th line from the middle line (vip-line-to-middle).

zL

z - Put point on the bottom line in the window. Given a count n, point will be
placed in the n-th line from bottom (vip-line-to-bottom).

Cc-1 Center point in window and redisplay screen (recenter).

2.6 Mark Commands

The following commands are used to mark positions in the buffer.

m ch Store current point in the register ch. ch must be a lower case character between
a and z.

m < Set mark at the beginning of current buffer.

m > Set mark at the end of current buffer.

m . Set mark at point.

m, Jump to mark (and pop mark off the mark ring).

Emacs uses the mark ring to store marked positions. The commands m <, m > and m .
not only set mark but also add it as the latest element of the mark ring (replacing the oldest
one). By repeating the command ‘m ,’ you can visit older and older marked positions. You
will eventually be in a loop as the mark ring is a ring.

Chapter 2: Vi Commands 14

2.7 Motion Commands

Commands for moving around in the current buffer are collected here. These commands
are used as an ‘argument’ for the delete, change and yank commands to be described in the
next section.

h Move point backward by one character. Signal error if point is at the beginning
of buffer, but (unlike Vi) do not complain otherwise (vip-backward-char).

1 Move point backward by one character. Signal error if point is at the end of
buffer, but (unlike Vi) do not complain otherwise (vip-forward-char).

j Move point to the next line keeping the current column. If point is on the last
line of the buffer, a new line will be created and point will move to that line
(vip-next-line).

k Move point to the previous line keeping the current column (vip-next-line).

Move point to the next line at the first non-white character. If point is on the
last line of the buffer, a new line will be created and point will move to the
beginning of that line (vip-next-line-at-bol).

- Move point to the previous line at the first non-white character (vip-previous-
line-at-bol).

If a count is given to these commands, the commands will be repeated that many times.

0 Move point to the beginning of line (vip-beginning-of-line).

- Move point to the first non-white character on the line (vip-bol-and-skip-
white).

$ Move point to the end of line (vip-goto-eol).

n | Move point to the n-th column on the line (vip-goto-col).

Except for the | command, these commands neglect a count.
Move point forward to the beginning of the next word (vip-forward-word).

W Move point forward to the beginning of the next word, where a word is consid-
ered as a sequence of non-white characters (vip-forward-Word).

Move point backward to the beginning of a word (vip-backward-word).

B Move point backward to the beginning of a word, where a word is considered
as a sequence of non-white characters (vip-forward-Word).

e Move point forward to the end of a word (vip-end-of-word).

E Move point forward to the end of a word, where a word is considered as a

sequence of non-white characters (vip-end-of-Word).

Here the meaning of the word ‘word’ for the w, b and e commands is determined by the
syntax table effective in the current buffer. Each major mode has its syntax mode, and
therefore the meaning of a word also changes as the major mode changes. See GNU Emacs
Manual for details of syntax table.

H Move point to the beginning of the home (top) line of the window. Given a
count n, go to the n-th line from top (vip-window-top).

Chapter 2: Vi Commands 15

M Move point to the beginning of the middle line of the window. Given a count
n, go to the n-th line from the middle line (vip-window-middle).

L Move point to the beginning of the lowest (bottom) line of the window. Given
count, go to the n-th line from bottom (vip-window-bottom).

These commands can be used to go to the desired line visible on the screen.

(Move point backward to the beginning of the sentence (vip-backward-
sentence).

Move point forward to the end of the sentence (vip-forward-sentence).

{ Move point backward to the beginning of the paragraph (vip-backward-
paragraph).
} Move point forward to the end of the paragraph (vip-forward-paragraph).

A count repeats the effect for these commands.

G Given a count n, move point to the n-th line in the buffer on the first non-white
character. Without a count, go to the end of the buffer (vip-goto-line).

Exchange point and mark (vip-goto-mark).

¢ ch Move point to the position stored in the register ch. ch must be a lower case
letter.
70 Exchange point and mark, and then move point to the first non-white character

on the line (vip-goto-mark-and-skip-white).

’ ch Move point to the position stored in the register ch and skip to the first non-
white character on the line. ch must be a lower case letter.

YA Move point to the matching parenthesis if point is looking at ¢,), {, }, [or]
(vip-paren-match).

The command G mark point before move, so that you can return to the original point by ¢

¢. The original point will also be stored in the mark ring.

The following commands are useful for moving points on the line. A count will repeat
the effect.

f ch Move point forward to the character ch on the line. Signal error if ch could not
be found (vip-find-char-forward).

Fch Move point backward to the character ch on the line. Signal error if ch could
not be found (vip-find-char-backward).

t ch Move point forward upto the character ch on the line. Signal error if ch could
not be found (vip-goto-char-forward).

T ch Move point backward upto the character ch on the line. Signal error if ch could
not be found (vip-goto-char-backward).

; Repeat previous f, t, F or T command (vip-repeat-find).

s Repeat previous f, t, F or T command, in the opposite direction (vip-repeat-
find-opposite).

Chapter 2: Vi Commands 16

2.8 Searching and Replacing

Following commands are available for searching and replacing.

/ string RET
Search the first occurrence of the string string forward starting from point.
Given a count n, the n-th occurrence of string will be searched. If the variable
vip-re-search has value t then regular expression search is done and the
string matching the regular expression string is found. If you give an empty
string as string then the search mode will change from vanilla search to regular
expression search and vice versa (vip-search-forward).

? string RET
Same as /, except that search is done backward (vip-search-backward).

n Search the previous search pattern in the same direction as before (vip-search-
next).

N Search the previous search pattern in the opposite direction (vip-search-
Next).

C-s Search forward incrementally. See GNU Emacs Manual for details

(isearch-forward).
C-r Search backward incrementally (isearch-backward).

R string RET newstring

There are two modes of replacement, vanilla and regular expression. If the
mode is wvanilla you will get a prompt ‘Replace string:’, and if the mode
is regular expression you will ge a prompt ‘Replace regexp:’. The mode is
initially wvanilla, but you can toggle these modes by giving a null string as
string. If the mode is vanilla, this command replaces every occurrence of string
with newstring. If the mode is regular expression, string is treated as a regular
expression and every string matching the regular expression is replaced with
newstring (vip-replace-string).

@ string RET newstring
Same as R except that you will be asked form confirmation before each replace-
ment
(vip-query-replace).

r ch Replace the character point is looking at by the character ch. Give count,
replace that many characters by ch (vip-replace-char).

The commands / and ? mark point before move, so that you can return to the original
point by ¢ ‘.

2.9 Modifying Commands

In this section, commands for modifying the content of a buffer are described. These com-
mands affect the region determined by a motion command which is given to the commands
as their argument.

Chapter 2: Vi Commands 17

We classify motion commands into point commands and line commands. The point
commands are as follows:

h, l’ O’ A’ $’ w’ W’ b, B’ e’ E’ (’)’ /’ ?’ {’ f’ F’ t’ T’ %’ ;’ 2
The line commands are as follows:

j b k’ + b _’ H’ M’ L’ {’ }’ G’ ’
If a point command is given as an argument to a modifying command, the region determined
by the point command will be affected by the modifying command. On the other hand, if
a line command is given as an argument to a modifying command, the region determined
by the line command will be enlarged so that it will become the smallest region properly
containing the region and consisting of whole lines (we call this process expanding the
region), and then the enlarged region will be affected by the modifying command.

2.9.1 Delete Commands

d motion-command
Delete the region determined by the motion command motion-command.

For example, d $ will delete the region between point and end of current line since $ is a
point command that moves point to end of line. d G will delete the region between the
beginning of current line and end of the buffer, since G is a line command. A count given
to the command above will become the count for the associated motion command. Thus, 3
d w will delete three words.

It is also possible to save the deleted text into a register you specify. For example, you
can say " t 3 d w to delete three words and save it to register t. The name of a register
is a lower case letter between a and z. If you give an upper case letter as an argument to
a delete command, then the deleted text will be appended to the content of the register
having the corresponding lower case letter as its name. So, " T d w will delete a word and
append it to register t. Other modifying commands also accept a register name as their
argument, and we will not repeat similar explanations.

We have more delete commands as below.

dd Delete a line. Given a count n, delete n lines.

dr Delete current region.

dR Expand current region and delete it.

D Delete to the end of a line (vip-kill-line).

X Delete a character after point. Given n, delete n characters (vip-delete-char).
DEL Delete a character before point. Given n, delete n characters (vip-delete-

backward-char).

2.9.2 Yank Commands

Yank commands yank a text of buffer into a (usually anonymous) register. Here the word
‘yvank’ is used in Vi’s sense. Thus yank commands do not alter the content of the buffer, and
useful only in combination with commands that put back the yanked text into the buffer.

y motion—-command
Yank the region determined by the motion command motion-command.

Chapter 2: Vi Commands

18

For example, y $ will yank the text between point and the end of line into an anonymous

register, while "c y § will yank the same text into register c.

Use the following command to yank consecutive lines of text.

yy

Y Yank a line. Given n, yank n lines (vip-yank-1line).
yr Yank current region.

v R Expand current region and yank it.

2.9.3 Put Back Commands
Deleted or yanked texts can be put back into the buffer by the command below.

p Insert, after the character point is looking at, most recently deleted/yanked
text from anonymous register. Given a register name argument, the content
of the named register will be put back. Given a count, the command will be
repeated that many times. This command also checks if the text to put back
ends with a new line character, and if so the text will be put below the current

line (vip-put-back).

P Insert at point most recently deleted/yanked text from anonymous register.
Given a register name argument, the content of the named register will be put
back. Given a count, the command will be repeated that many times. This
command also checks if the text to put back ends with a new line character, and
if so the text will be put above the current line rather than at point (vip-Put-

back).

Thus, " ¢ p will put back the content of the register ¢ into the buffer. It is also possible to
specify number register which is a numeral between 1 and 9. If the number register n is
specified, n-th previously deleted/yanked text will be put back. It is an error to specify a

number register for the delete/yank commands.

2.9.4 Change Commands

Most commonly used change command takes the following form.

¢ motion-command

Replace the content of the region determined by the motion command motion-
command by the text you type. If the motion command is a point command
then you will type the text into minibuffer, and if the motion command is a
line command then the region will be deleted first and you can insert the text

in insert mode.

For example, if point is at the beginning of a word ‘foo’ and you wish to change it to ‘bar’,
you can type ¢ w. Then, as w is a point command, you will get the prompt ‘foo => in the

minibuffer, for which you can type b a r RET to complete the change command.
cc Change a line. Given a count, that many lines are changed.
cr Change current region.

cR Expand current region and change it.

Chapter 2: Vi Commands 19

2.9.5 Repeating and Undoing Modifications

VIP records the previous modifying command, so that it is easy to repeat it. It is also very
easy to undo changes made by modifying commands.

u Undo the last change. You can undo more by repeating undo by the repeat

command ‘.’. For example, you can undo 5 previous changes by typing ‘u....".
If you type ‘uu’, then the second ‘u’ undoes the first undo command (vip-undo).

Repeat the last modifying command. Given count n it becomes the new count
for the repeated command. Otherwise, the count for the last modifying com-
mand is used again (vip-repeat).

2.10 Other Vi Commands

Miscellaneous Vi commands are collected here.

ZZ Exit Emacs. If modified buffers exist, you will be asked whether you wish to
save them or not (save-buffers-kill-emacs).

! motion-command format-command

n ! ! format-command
The region determined by the motion command motion-command will be given
to the shell command format-command and the region will be replaced by its
output. If a count is given, it will be passed to motion-command. For example,
‘3!Gsort’ will sort the region between point and the 3rd line. If ! is used
instead of motion-command then n lines will be processed by format-command
(vip-command-argument).

J Join two lines. Given count, join that many lines. A space will be inserted at
each junction (vip-join-lines).

< motion-command

n<< Shift region determined by the motion command motion-command to left by
shift-width (default is 8). If < is used instead of motion-command then shift n
lines

(vip-command-argument).

> motion-command

n>> Shift region determined by the motion command motion-command to right by
shift-width (default is 8). If < is used instead of motion-command then shift n
lines

(vip-command-argument).

= motion-command
Indent region determined by the motion command motion-command. If = is
used instead of motion-command then indent n lines (vip-command-argument).

* Call last remembered keyboard macro.

A new vi operator. See Section 1.4.8 [New Commands], page 6, for more de-
tails.

Chapter 2: Vi Commands 20

The following keys are reserved for future extensions, and currently assigned to a function
that just beeps (vip-nil).
& @, U, [, 1, _, q, ~
VIP uses a special local keymap to interpret key strokes you enter in vi mode. The
following keys are bound to nil in the keymap. Therefore, these keys are interpreted by the

global keymap of Emacs. We give below a short description of the functions bound to these
keys in the global keymap. See GNU Emacs Manual for details.

c-e Set mark and push previous mark on mark ring (set-mark-command).

TAB Indent line for current major mode (indent-for-tab-command).

LFD Insert a newline, then indent according to mode (newline-and-indent).

C-k Kill the rest of the current line; before a newline, kill the newline. With pre-

fix argument, kill that many lines from point. Negative arguments kill lines
backward (kill-line).

Cc-1 Clear the screen and reprint everything (recenter).
n C-p Move cursor vertically up n lines (previous-1line).
C-q Read next input character and insert it. Useful for inserting control characters

(quoted-insert).

C-r Search backward incrementally (isearch-backward).
C-s Search forward incrementally (isearch-forward).
n C-t Interchange characters around point, moving forward one character. With count

n, take character before point and drag it forward past n other characters. If
no argument and at end of line, the previous two characters are exchanged
(transpose-chars).

n C-v Scroll text upward n lines. If n is not given, scroll near full screen (scroll-up).

C-w Kill between point and mark. The text is save in the kill ring. The command
P or p can retrieve it from kill ring (kill-region).

2.11 Insert Mode

You can enter insert mode by one of the following commands. In addition to these, you
will enter insert mode if you give a change command with a line command as the motion
command. Insert commands are also modifying commands and you can repeat them by the
repeat command . (vip-repeat).

i Enter insert mode at point (vip-insert).

I Enter insert mode at the first non white character on the line (vip-Insert).
a Move point forward by one character and then enter insert mode (vip-append).
A Enter insert mode at end of line (vip-Append).

o Open a new line below the current line and enter insert mode (vip-open-line).

0 Open a new line above the current line and enter insert mode (vip-Open-line).

Chapter 2: Vi Commands 21

C-o Insert a newline and leave point before it, and then enter insert mode
(vip-open-line-at-point).

Insert mode is almost like emacs mode. Only the following 4 keys behave differently
from emacs mode.

ESC This key will take you back to vi mode (vip-change-mode-to-vi).

C-h Delete previous character (delete-backward-char).

C-w Delete previous word (vip-delete-backward-word).

C-z This key simulates ESC key in emacs mode. For instance, typing C-z x in insert

mode iw the same as typing ESC x in emacs mode (vip-ESC).

You can also bind C-h to help-command if you like. (See Section 4.2 [Customizing Key
Bindings|, page 26, for details.) Binding C-h to help-command has the effect of making the
meaning of C-h uniform among emacs, vi and insert modes.

When you enter insert mode, VIP records point as the start point of insertion, and when
you leave insert mode the region between point and start point is saved for later use by
repeat command etc. Therefore, repeat command will not really repeat insertion if you
move point by emacs commands while in insert mode.

22

3 Ex Commands

In vi mode, you can execute an Ex command ex-command by typing:
: ex—-command RET
Every Ex command follows the following pattern:
address command ! parameters count flags

where all parts are optional. For the syntax of address, the reader is referred to the reference
manual of Ex.

In the current version of VIP, searching by Ex commands is always magic. That is,
search patterns are always treated as regular expressions. For example, a typical forward
search would be invoked by :/pat/. If you wish to include ‘/’ as part of pat you must
preceded it by ‘\’. VIP strips off these \’s before / and the resulting pat becomes the
actual search pattern. Emacs provides a different and richer class or regular expressions
than Vi/Ex, and VIP uses Emacs’ regular expressions. See GNU Emacs Manual for details
of regular expressions.

Several Ex commands can be entered in a line by separating them by a pipe character
3 | 7'

3.1 Ex Command Reference

In this section we briefly explain all the Ex commands supported by VIP. Most Ex com-
mands expect address as their argument, and they use default addresses if they are not
explicitly given. In the following, such default addresses will be shown in parentheses.

Most command names can and preferably be given in abbreviated forms. In the following,
optional parts of command names will be enclosed in brackets. For example, ‘co[py]’ will
mean that copy command can be give as ‘co’ or ‘cop’ or ‘copy’.

If command is empty, point will move to the beginning of the line specified by the
address. If address is also empty, point will move to the beginning of the current line.

Some commands accept flags which are one of p, 1 and #. If flags are given, the text
affected by the commands will be displayed on a temporary window, and you will be asked
to hit return to continue. In this way, you can see the text affected by the commands before
the commands will be executed. If you hit C-g instead of RET then the commands will be
aborted. Note that the meaning of flags is different in VIP from that in Vi/Ex.

(.,.) colpy] addr flags

(.,.) t addr flags
Place a copy of specified lines after addr. If addr is 0, it will be placed before
the first line.

(.,.) dleletel] register count flags
Delete specified lines. Text will be saved in a named register if a lower case
letter is given, and appended to a register if a capital letter is given.

Chapter 3: Ex Commands 23

el[dit] ! +addr file

e[x] ! +addr file

vi[sual] ! +addr file
Edit a new file file in the current window. The command will abort if current
buffer is modified, which you can override by giving !. If +addr is given, addr
becomes the current line.

file Give information about the current file.

(1,%) gllobal] ! /pat/ cmds

(1,%) v /pat/ cmds
Among specified lines first mark each line which matches the regular expression
pat, and then execute cmds on each marked line. If ! is given, cmds will be
executed on each line not matching pat. v is same as g!.

(.,.+1) jloin] ! count flags
Join specified lines into a line. Without !, a space character will be inserted at
each junction.

(.) kch

(.) mar[k] ch
Mark specified line by a lower case character ch. Then the addressing form ’ch
will refer to this line. No white space is required between k and ch. A white
space is necessary between mark and ch, however.

map ch rhs
Define a macro for vi mode. After this command, the character ch will be
expanded to rhs in vi mode.

(.,.) m[ove] addr
Move specified lines after addr.

(.) pult] register
Put back previously deleted or yanked text. If register is given, the text saved
in the register will be put back; otherwise, last deleted or yanked text will be
put back.

qluit] ! Quit from Emacs. If modified buffers with associated files exist, you will be
asked whether you wish to save each of them. At this point, you may choose
not to quit, by hitting C-g. If ! is given, exit from Emacs without saving
modified buffers.

(.) rlead] file
Read in the content of the file file after the specified line.

(.) rlead] ! command
Read in the output of the shell command command after the specified line.

se[t] Set a variable’s value. See Section 4.1 [Customizing Constants], page 26, for
the list of variables you can set.

shlell] Run a subshell in a window.

Chapter 3: Ex Commands 24

(.,.) slubstitute] /pat/repl/ options count flags

(.,.) & options count flags
On each specified line, the first occurrence of string matching regular expres-
sion pat is replaced by replacement pattern repl. Option characters are g and
c. If global option character g appears as part of options, all occurrences are
substituted. If confirm option character ¢ appears, you will be asked to give
confirmation before each substitution. If /pat/repl/ is missing, the last sub-
stitution is repeated.

st [op] Suspend Emacs.

talg] tag Find first definition of tag. If no tag is given, previously given tag is used
and next alternate definition is find. By default, the file TAGS in the current
directory becomes the selected tag table. You can select another tag table by
set command. See Section 4.1 [Customizing Constants], page 26, for details.

und [o] Undo the last change.

unm[ap] ch
The macro expansion associated with ch is removed.

vel[rsion]
Tell the version number of VIP.

(1,%) wlrite] ! file
Write out specified lines into file file. If no file is given, text will be written to
the file associated to the current buffer. Unless ! is given, if file is different from
the file associated to the current buffer and if the file file exists, the command

will not be executed. Unlike Ex, file becomes the file associated to the current
buffer.

(1,%) wlrite]>> file
Write out specified lines at the end of file file. file becomes the file associated
to the current buffer.

(1,%) wq ! file
Same as write and then quit. If ! is given, same as write ! then quit.

(.,.) ylank] register count
Save specified lines into register register. If no register is specified, text will be
saved in an anonymous register.

addr ! command
Execute shell command command. The output will be shown in a new window.
If addr is given, specified lines will be used as standard input to command.

(%) = Print the line number of the addressed line.

(.,.) > count flags
Shift specified lines to the right. The variable vip-shift-width (default value
is 8) determines the amount of shift.

(.,.) < count flags
Shift specified lines to the left. The variable vip-shift-width (default value
is 8) determines the amount of shift.

Chapter 3: Ex Commands 25

(.,.) ~ options count flags
Repeat the previous substitute command using previous search pattern as
pat for matching.

The following Ex commands are available in Vi, but not implemented in VIP.

abbreviate, list, next, print, preserve, recover, rewind, source,
unabbreviate, xit, z

26

4 Customization

If you have a file called .vip in your home directory, then it will also be loaded when VIP
is loaded. This file is thus useful for customizing VIP.

4.1 Customizing Constants

An easy way to customize VIP is to change the values of constants used in VIP. Here is the
list of the constants used in VIP and their default values.

vip-shift-width 8
The number of columns shifted by > and < command.

vip-re-replace nil
If t then do regexp replace, if nil then do string replace.

vip-search-wrap-around t
If t, search wraps around the buffer.

vip-re-search nil
If t then search is reg-exp search, if nil then vanilla search.

vip-case-fold-search nil
If t search ignores cases.

vip-re-query-replace nil
If t then do reg-exp replace in query replace.

vip-open-with-indent nil
If t then indent to the previous current line when open a new line by o or 0
command.

vip-tags-file—-name "TAGS"
The name of the file used as the tag table.

vip-help-in-insert-mode nil
If t then C-h is bound to help-command in insert mode, if nil then it sis bound
to delete-backward-char.

You can reset these constants in VIP by the Ex command set. Or you can include a line
like this in your .vip file:

(setq vip-case-fold-search t)

4.2 Customizing Key Bindings

VIP uses vip-command-mode-map as the local keymap for vi mode. For example, in vi
mode, SPC is bound to the function vip-scroll. But, if you wish to make SPC and some
other keys behave like Vi, you can include the following lines in your .vip file.
(define-key vip-command-mode-map "\C-g" ’vip-info-on-file)
(define-key vip-command-mode-map "\C-h" ’vip-backward-char)
(define-key vip-command-mode-map "\C-m" ’vip-next-line-at-bol)
(define-key vip-command-mode-map " " ’vip-forward-char)
(define-key vip-command-mode-map "g" ’vip-keyboard-quit)

Chapter 4: Customization

(define-key
(define-key
(define-key
(define-key
(define-key

vip-command-mode-map
vip-command-mode-map
vip-command-mode-map
vip-command-mode-map
vip-command-mode-map

I|S||
IICll
IIRll
||S||
IIXH

’vip-substitute)
’vip-change-to-eol)
’vip-change-to-eol)
’vip-substitute-line)
’vip-delete-backward-char)

27

Key Index

0

000 C-@ (set-mark-command) 20
001 C-a (vip-beginning-of-line).............. 6
002 C-b (vip-scroll-back) 13
003 C-c (vip=Ctl-C)ccoviiriininnnnn.. 6, 10
004 C-d (vip-scroll-up)ccouun... 13
005 C-e (vip-scroll-up-one) 13
006 C-f (vip-scroll-back)cc...uunn 12
007 C-g (vip-keyboard-quit) 5,7, 10
010 C-h (delete-backward-char)

(insertmode)oovvuiiiiieiiiii e 21
010 C-h (vip-delete-backward-

char) (insertmode)coiviinnn. 4
011 TAB (indent-for-tab-command) 20
012 LFD (newline-and-indent) 20
013 C-k (kill-1ine)ovviiiiiinnnnnnnnnnnn 20
014 C-1 (recenter)ccovveeeunnnn. 10, 20
015 RET (vip-scroll-back) 7,13
016 C-n (vip-next-window) 6, 8,11
017 C-o (vip-open-line-at-point) 6, 21
020 C-p (previous-line)...................... 20
021 C-q (quoted-insert) 20
022 C-r (isearch-backward) 6, 16, 20
023 C-s (isearch-forward) 6, 16, 20
024 C-t (transpose-chars) 20
025 C-u (vip-scroll-down) 13
026 C-v (SCTOll-up)cevvvinuinninnnn.nn 20
027 C-w (kill-region)ccoovuinn.. 20
027 C-w (vip-delete-backward-

word) (insertmode)................oo.... 4, 21
0300 C-x (VIp=Ctl-xX)ooviiiiinnnn.. 6, 10
0301 C-x C-z (suspend-emacs) 3
031 C-y (vip-scroll-down-one) 13
032 C-z (vip-change-mode-to-vi) 3,4
032 C-z (vip-ESC) (insert mode) 4, 21
033 ESC (vip-change-mode-to-vi)

(insertmode)coiiiiiiiininnnn. 4,21
033 ESC (VAp=ESC)vvviiiiie e 6, 10
040 SPC (vip-scroll)c..... 7,12
041 ! (vip-command-argument) 19
042 " (vip-command-argument) 17
0430 # (vip-command-argument) 7
0431 # C (upcase-region) 7
0432 # c¢ (downcase-region) 7
0432 # g (vip-global-execute) 7
0432 # q (vip-quote-region) 7
0432 # s (spell-region)coovvvnnnnn. 7
044 $ (vip-goto=eol)oeiiiriiinninnn.. 14
045 7 (vip-paren-match) 15
046 & (vip—nil) ...t 20
047 ’ (vip-goto-mark-and-skip-white) 15
050 ((vip-backward-sentence) 15
051) (vip-forward-sentence) 15

052 * (vip-call-last-kbd-macro)........ 7,8,19

28

053 + (vip-next-line-at-bol)
054 , (vip-repeat-find-opposite)

055 - (vip-previous-line-at-bol)
056 . (vip-repeat)ciiiiinn 5,
057 / (vip-search-forward) 5,

060 O (vip-beginning-of-line)
061 1 (numeric argument)
062 2 (numeric argument)
063 3 (numeric argument)
064 4 (numeric argument)
065 5 (numeric argument)
066 6 (numeric argument)
067 7 (numeric argument)
068 8 (numeric argument)
069 9 (numeric argument)
072 @ (VAP=X) « ittt
073 ; (vip-repeat-find)cccvvnunn.
074 < (vip-command-argument)
075 = (vip-command-argument)
076 > (vip-command-argument)
077 7 (vip-search-backward) 5,

1

100 @ (VIp=nil) «.vinti i
101 A (vip-Append) ...ttt
102 B (vip-backward-Word)
103 C (vip-ctl-c-equivalent).............. 7,
104 D (vip-kill-line)
105 E (vip-end-of-Word)oon...
106 F (vip-find-char-backward)
107 G (vip-goto-line)ccovvunnen...
110 H (vip-window—top)covvuuiueeennnnnn
111 T (vip-Insert)ooviiieinnnnnnennnnn.
112 J (vip-join-lines)
113 K (vip-kill-buffer) 6, 8,
114 L (vip-window-bottom)

1156 M (vip-window-middle)
116 N (vip-search-Next)
117 0 (vip-Open-line)...................... 5,
120 P (vip-Put-back)oovuinnn... 5,
121 @ (vip-query-replace) 6,
122 R (vip-replace-string) 6,
123 S (vip-switch-to-buffer-

other-window)coivviviiinnnn. 7,8,

124 T (vip-goto-char-backward)

1256 U (vip—nil) c.ooiiii i
126 V (vip-find-file-other-window) 6, 8,
127 W (vip-forward-Word)
1300 X (vip-ctl-x-equivalent) 7,
1301 X ((start-kbd-macro)
1301 X) (end-kbd-macro)c.c......
1301 X 1 (delete-other-windows) 8,
1301 X 2 (split-window-vertically)....... 8,

20

14
10
17
14
15
15
14

19
11
15
15
16
20
18
16
16

Key Index

1301 X 3 (vip-buffer-in-two-windows) §, 11

1302 X B (list-buffers) 11
1302 X I (insert-file) 8, 11
1302 X S (save-buffer) 8, 11
1302 X W (write-file).............coiini... 8, 11
1302 X Z (suspend-emacs) 8
131 Y (vip-yank-line)c.oi. 18
132 Z Z (save-buffers-kill-emacs) 19
133 [(vAP=DAl) .ot 20
134 \ (vip-escape-to-emacs)............... 6, 10
135] (vip—nil) .ot 20
136 ~ (vip-bol-and-skip-white).............. 14
137 _ (vipmnil) oo 20
140 ¢ (vip-goto—mark) 15
141 a (vip-append)ooiiiiiiiiia. 20
142 b (vip-backward-word) 14
1430 ¢ (vip-command-argument) 18
1431 Cc R 18
1432 C Covvnnie e 18
1432 € T 18
1440 d (vip-command-argument) 17
1441 d R..o oo 17
1442 d d.....ooooi 17
1442 d oo 17
145 e (vip-end-of-word) 14
146 f (vip-find-char-forward) 15
147 g (vip-info-on-file) 7,12
150 h (vip-backward-char) 14
151 1 (vip-insert)............. 20

1562 j (vip-next-line)oo.... 14

29
163 k (vip-previous-line) 14
154 1 (vip-forward-char)..................... 14
155 m (vip-mark-point) 5,13
156 n (vip-search-next) 16
157 o (vip-open-line)...................... 5, 20
160 p (vip-put-back)c..o.... 5, 18
161 g (vip—nil) c.oiii i 20
162 r (vip-replace-char)..................... 16
163 s (vip-switch-to-buffer) 7,8,11
164 t (vip-goto-char-forward) 15
165 u (vip-undo)l 5,19
166 v (vip-find-file) 6, 8, 11
167 w (vip-forward-word) 14
170 x (vip-delete-char) 17
1710 y (vip-command-argument) 17
1741 7 Rt 18
1712 7 oo 18
1712 y y (vip-yank-line)..................... 18
1721 z RET (vip-line-to-top).............. 5,13
1722 z - (vip-line-to-bottom) 5,13
1722 z . (vip-line-to-middle) 5,13
1723 z H (vip-line-to-top) 5,13
1723 z L (vip-line-to-bottom) 5,13
1723 z M (vip-line-to-middle) 5, 13
173 { (vip-backward-paragraph) 15
174 | (vip-goto-col)ciiiiiiiiiinnn. 14
175 } (vip-forward-paragraph) 15
176 ~ (vip-nil) ... 20
177 DEL (vip-delete-backward-char) 17

Concept Index

A

E

emacs Mode.uiii 4
end (of buffer) 3
expanding (region)......... ..., 17

F

file name completion............ 12
fag . .o 22

G

global keymap oL 3

I

insert mode...........iiiiiiiii e 4

line commands................................. 16
local keymap..........coooiiiiiii i, 3, 26
looking at...........oo i 3

30

MAZIC. ¢ vttt 22
mark ... 3
mark ring........... 13
mode 3
mode line........... i 4
modified (buffer).............. ... oL 10

N

number register........... . oo 18
numeric arguments. 10

P

POING ..o 3
point commands 16

R

TEZIOM . .ottt 3,6
regular expression............ ..o i 22
regular expression (replacement) 16
regular expression (search)..................... 16

S

selected buffer 10
selected tag table L. 24
syntax tableo i 14

vanilla (replacement).................... ..., 16
vimode......... .. o 3
visiting (a file) ... 12

W

Table of Contents

Distribution.......... 1
Introduction 2
1 ASurveyof VIP 3
1.1 Basic Concepts .. .ouuuiti 3
1.2 Loading VIP ... e 3
1.3 Modesin VIP 3
1.3.1 Emacs Mode........cooiiii 4

1.3.2 ViMode.o 4

1.3.3 Imsert Modeo 4

1.4 Differences from Vi...... ... 5
141 Undoingoonn i e 5

1.4.2 Changingoouueiiin i e e)

1.4.3 Searching........ ..o 5

144 zCommandooioiiii 5

1.4.5 CoUmbS o oot 5

1.4.6 Markingoouiii 5

1.4.7 Region Commands.c.oiiiiiiiiiiiiiiniieennnn.. 6

1.4.8 Some New CommandsSoouiinniiiiiiiiinnnn. 6

1.4.9 New Key Bindings.........ccooiiiiiiiiiiiiii i, 7
1.4.10 Window Commandsoiuuiiiiiiiiinn... 8
1.4.11 Buffer Commandscc . 8
1.4.12 File Commands.ooiiiiiiiiiia i 8
1.4.13 Miscellaneous CommandsSc.cooviiiniinnennn.. 8

2 ViCommands.........................c...... 10
2.1 Numeric Arguments . ..ottt 10
2.2 Important Keys 10
2.3 Buffers and Windows 10
2.4 Fales ..o 11
2.5 Viewing the Buffer 12
2.6 Mark Commandsottt 13
2.7 Motion Commandsooiiniiiii 14
2.8 Searching and Replacing. ..., 16
2.9 Modifying Commandsc..viiuiiiiiiiiiii i, 16
2.9.1 Delete Commandsc.cooiiiiiniiiii .. 17

2.9.2 Yank Commandsccooiiiiiiiii . 17

2.9.3 PutBack Commands..............cco ... 18

2.9.4 Change Commandso.ueiiiiiiiiniiinniieann. 18

2.9.5 Repeating and Undoing Modifications..................... 19

2.10 Other Vi Commandscouiiiriiiii i 19

211 Insert Mode. ... 20

3 ExCommands................................. 22
3.1 Ex Command Reference................cciiiiiiiia... 22
4 Customization.................................. 26
4.1 Customizing Constantso.uiiiiiiiiiiiiiiniiea.n. 26
4.2 Customizing Key Bindings............o i 26
Key Index i 28
Concept Index 30

ii

	Distribution
	Introduction
	1 A Survey of VIP
	Basic Concepts
	Loading VIP
	Modes in VIP
	Emacs Mode
	Vi Mode
	Insert Mode

	Differences from Vi
	Undoing
	Changing
	Searching
	z Command
	Counts
	Marking
	Region Commands
	Some New Commands
	New Key Bindings
	Window Commands
	Buffer Commands
	File Commands
	Miscellaneous Commands

	2 Vi Commands
	Numeric Arguments
	Important Keys
	Buffers and Windows
	Files
	Viewing the Buffer
	Mark Commands
	Motion Commands
	Searching and Replacing
	Modifying Commands
	Delete Commands
	Yank Commands
	Put Back Commands
	Change Commands
	Repeating and Undoing Modifications

	Other Vi Commands
	Insert Mode

	3 Ex Commands
	Ex Command Reference

	4 Customization
	Customizing Constants
	Customizing Key Bindings

	Key Index
	Concept Index

